Extending the Kibble-Zurek Mechanism to Weakly First-Order Phase Transitions

Fumika Suzuki (with Wojciech H. Zurek)

Topological defect formation in a phase transition with tunable order, Phys. Rev. Lett. 132, 241601 (2024)

Center for Nonlinear Studies

Cosmological phase transition in the early universe

liquid water

Phase transition of universe after Big Bang as it cooled

Tom Kibble

Due to phase transitions, separated regions can have different values of the field \rightarrow topological defects form when different values of the field meet

liquid water

er solid ice with cracks Kibble-Zurek mechanism → density of defects

cold universe with defects

Second-order phase transition

Spontaneous symmetry breaking

KZM

liquid crystals

Topological defects form where different broken symmetry choices meet

cosmological phase transition

Kibble-Zurek mechanism (KZM)

Equilibrium correlation length & relaxation time

$$\xi(\varepsilon) = rac{\xi_0}{|\varepsilon|^{
u}} \qquad au(\varepsilon) = rac{1}{|\varepsilon|}$$

Relative distance to the critical point $\varepsilon = \frac{\lambda_c - \lambda}{\gamma}$

Linear quench $\varepsilon(t) = \frac{t}{\tau_Q} + \frac{1}{\tau_Q}$ — quench time

Domain size $\hat{\xi} \equiv \xi[\hat{\varepsilon}] = \xi_0 \left(\frac{\tau_Q}{\tau_0}\right)^{\frac{\nu}{1+z\nu}}$

Density of topological defects

$$n \sim \frac{\hat{\xi}^{d}}{\hat{\xi}^{D}} = \frac{1}{{\xi_{0}}^{D-d}} \left(\frac{\tau_{0}}{\tau_{Q}}\right)^{(D-d)\frac{\nu}{1+z\nu}}$$

D: dimensions of space d: dimensions of defects A. Del Campo & W. H. Zurek, Int. J. Mod. Phys. A 29, 1430018 (2014)

(Predict defects density by quantity describing equilibrium behavior near the critical point)

Numerical test of second-order phase transition

Langevin equation

order parameter

damping constant

Slow quench (large τ_{Q})

Number of defects vs τ_Ω

Larger $\tau_{Q} \rightarrow$ slower quench \rightarrow fewer defects

 $N = N_0 \tau_Q^{-a}$ a = 0.26 $N_0 = 164$

Agrees well with theoretical prediction 1/4

(Power-law decreases of no. of defects as predicted by KZM)

Review: First-order phase transition

e.g., water/ice phase transition, false vacuum decay (cosmology)

Nucleation \rightarrow nucleus grows \rightarrow new phase

Defects creation in first-order phase transition

of defects by nucleation

nucleation rate

 $n_{nuc} \propto \Gamma/v$

Weakly first-order phase transition

$$V(\phi) = (\phi^4 - 2\epsilon\phi^2)/8 - c|\phi|^3/3$$

$$for a for a for$$

Topological defects creation in weakly first-order phase transition

Literature: look for KZM-like unified power-law for defects formation

Suzuki, Zurek: a mixture of KZM & nucleation is what actually happens

of defects in weakly first-order phase transitions $n = fn_{nuc} + (1 - f)n_{KZM}$

of defects by nucleation (depends on nucleation rate nucleus growth velocity)

of defects by KZM

f: fraction of volume covered by new phase via nucleation

Potential changes with time

Nucleation can only occur between t_1 and t_2

 t_1 : ϕ starts to interact with nucleation barriers

~ $\phi_{\rm barrier}$

(Location of barrier)

 t_2 : temperature θ becomes larger than B (energy of the barrier)

3

Volume fraction covered by new phase due to nucleation

$$\mathcal{V}(t,t_2) = \sigma \int_t^{t_2} v(\tau)$$

Nucleus shape constant

- $d\tau \leftrightarrow volume of nucleus at t_2$ which was formed at t
- Nucleus growth velocity
- $f=1 \leftrightarrow all space is covered by new phase$
- due to first-order phase transition (nucleation) before second-order phase transitions

Number of defects in weakly first-order phase transition $n = f n_{nuc} + (1 - f) n_{KZM}$ $\theta = 0.01$ $\int \propto \Gamma/v$ $n_{KZM} \propto \tau_Q^{-a}$ with a = 1/4 stopping 10^1 1st

V_B has weaker deviation from KZM nucleus growth velocity is smaller, $v \sim V_{old} - V_{new}$

$$f = 1 - \exp(-\Omega)$$

$$\mathcal{L} = \int_{t_1}^{t_2} \Gamma(\epsilon(t)) \mathcal{V}(t, t_2) dt \qquad \mathcal{V}(t, t_2) = \sigma \int_t^{t_2} v dt$$

$$(\phi) = \phi^6/12 - \epsilon \phi^2/4 - c \phi^4/4$$
 (Avadh Saxena)

Conclusion

-Weakly first order phase transition can appear in superconducting phase transition/liquid crystals (Fredericks phase transition)

-Weakly first order phase transition

of defects

$$n = f n_{nuc} + (1 - f) n_{KZM}$$

\leftrightarrow first-order phase transition (nucleation) + second order phase transition (KZM)

Acknowledgement: LANL LDRD program (20230049DR) **Center for Nonlinear Studies**

