### **Dynamically Assisted Tunneling**

### Ralf Schützhold

Helmholtz-Zentrum Dresden-Rossendorf Institut für Theoretische Physik, Technische Universität Dresden

### Los Alamos, June 4<sup>th</sup> 2024



### **Motivation**

S. Coleman: "Every child knows..."

$$P \sim \exp\left\{-\frac{2}{\hbar}\int dx\,\sqrt{2m[V(x)-E]}\right\}$$

Question:  $V(x) \rightarrow V(t, x)$  ?

- Here: V(x) plus field  $\mathfrak{E}(t)$ 
  - pre-acceleration
  - potential deformation
  - energy mixing  $\rightarrow$  Franz-Keldysh effect  $E \rightarrow E + \hbar \omega$  (Floquet ansatz)

W. Franz, Z. Naturforsch. 13 A, 484 (1958);L. V. Keldysh, Sov. Phys. JETP 34, 788 (1958).

what else?

Adiabatic versus non-adiabatic:

Büttiker-Landauer "traversal" time

$$\mathfrak{T} = \sqrt{m} \int dx \, / \sqrt{2[V(x) - E]}$$

M. Büttiker and R. Landauer, PRL 49, 1739 (1982).







+------ h(.)

# **Dynamically Assisted Tunneling**

Potential barrier V(x) plus time-dependent electric field  $\mathfrak{E}(t)$ 



Energy mixing  $\chi(t+i\mathfrak{T})$  displace

displacement ("pushing out")  $\chi(t)$ 

$$\psi_{\text{tra}}(E) \approx \psi_E^0 \int \frac{dt}{2\pi} e^{i(E-E_{\text{in}})t - \sqrt{2mV_0}[\chi(t+i\mathfrak{T}) - \chi(t)]}$$

Low-energy + opaque-barrier approximation

C. Kohlfürst, F. Queisser and R.S., Phys. Rev. Research 3, 033153 (2021).

 $\rightarrow$  instanton picture  $\checkmark$ 







### Triangular Barrier $\rightarrow$ Quantum Ratchets

Steep incidence



Mainly energy mixing at front end

$$\psi_{\rm tra}(E) \approx \psi_E^0 \int \frac{dt}{2\pi} e^{i(E-E_{\rm in})t - \sqrt{2mV_0}\chi(t+i\mathfrak{T})}$$

Gradual incidence



Mainly displacement at rear end

$$\psi_{\rm tra}(E) pprox \psi_E^0 \int {dt \over 2\pi} \, e^{i(E-E_{\rm in})t + \sqrt{2mV_0}\chi(t)}$$

 $\rightarrow$  quantum ratchets







### 

## **Rough Scaling Analysis**

Büttiker-Landauer "traversal" time

$$\mathfrak{T} = \int_{x_{\text{in}}^{E}}^{x_{\text{out}}^{E}} dx \sqrt{\frac{m}{2[V(x) - E]}} \sim \mathcal{O}(L^{2}m/\hbar) \sim 1/\omega$$

| Length | System           | Energy | Field Strength        |
|--------|------------------|--------|-----------------------|
| μm     | optical lattices | peV    | n.a.                  |
| nm     | solids           | meV    | $10^5 \text{ V/m}$    |
|        | atoms            | eV     | $10^{10} \text{ V/m}$ |
| pm     | nuclear fusion   | keV    | $10^{16} \text{ V/m}$ |
| fm     | lpha-decay       | MeV    | 10 <sup>18</sup> V/m  |

Relativistic: Sauter-Schwinger  $\mathfrak{E}_{\rm crit} = m_e c^3/(q_e \hbar) \approx 1.3 \times 10^{18} \ {\rm V/m}$ 

TECHNISCHE DRESDEN UNIVERSITÄT concept DRESDEN



# **Dynamically Assisted Nuclear Fusion**





F. Queisser and R.S., Phys. Rev. C 100, 041601(R) (2019).

 $^{2}_{1}D + ^{3}_{1}T \rightarrow ^{4}_{2}He + ^{1}_{0}n + 17.6 \text{ MeV}$  $^{1}_{1}p + ^{11}_{5}B \rightarrow 3 \times ^{4}_{2}He + 8.7 \text{ MeV}$ 

Assistance by XFEL field/pulse  $A_x(t) = A_0/\cosh^2(\omega t)$ 

Exponent (instanton) vs pre-factor...





### **Analytical Model**



Two-body Lagrangian with Coulomb (+nuclear) field and XFEL

$$L_{12} = \frac{m_1}{2} \dot{\mathbf{r}}_1^2 + \frac{m_2}{2} \dot{\mathbf{r}}_2^2 - V(|\mathbf{r}_1 - \mathbf{r}_2|) + (q_1 \dot{\mathbf{r}}_1 + q_2 \dot{\mathbf{r}}_2) \cdot \mathbf{A}(t)$$

Center-of-mass and relative coordinates with reduced mass

$$L = \frac{m}{2}\dot{\boldsymbol{r}}_{-}^{2} - V(|\boldsymbol{r}_{-}|) + q_{\text{eff}}\dot{\boldsymbol{r}}_{-} \cdot \boldsymbol{A}(t)$$

Approximate scaling symmetry  $\rightarrow$  dimension-less parameters

$$\eta = 2mEr_E^2 = \frac{2m}{E} \left(\frac{q_1q_2}{4\pi\epsilon_0}\right)^2, \quad \zeta = \frac{q_{\text{eff}}A}{m\omega r_E} = \frac{q_{\text{eff}}A}{mc} \frac{E}{\omega} \frac{4\pi\epsilon_0 c}{q_1q_2}$$
  
WKB tunneling exponent  $\mathcal{P} \sim \exp\{-\pi\sqrt{\eta}\}$   
Scaling  $E_{\text{p+B}} \leftrightarrow 20E_{\text{D+T}}$ 

4 🗆 🕨

### 

### Numerical Simulations

1D-Schrödinger solver for D+T fusion with  $\omega = 1$  keV and  $10^{16}$  V/m



Initial kinetic energy: 2 keV, 4 keV and 8 keV

Comparison: p+B fusion with E = 38 keV and pulse with  $\omega = 19 \text{ keV}$  and  $28 \times 10^{16} \text{ V/m}$  $\rightarrow$  scaling behavior

C. Kohlfürst, F. Queisser and R.S., Phys. Rev. Research 3, 033153 (2021).

Field of  $\alpha$ -particles?





Enhancement in j(t

O

0.5

0.675



0.85

t[as]

1.025

1.1



### **Resonance Effects**

 $A_x(t) = A_0 \cos(\omega t) \rightarrow \text{resonances at } E = n\omega$  (Floquet channels)

D. Ryndyk, C. Kohlfürst, F. Queisser, R.S., Phys. Rev. Research 6, 023056 (2024).

Box potential

Coulomb potential

4 🗆 🕨





Time-averaged potential approximation?





## Sauter-Schwinger Effect

F. Sauter, Z. Phys. 69, 742 (1931); J. S. Schwinger, Phys. Rev. 82, 664 (1951);... Schrödinger equation (non-relativistic)

$$i\hbar \frac{\partial}{\partial t}\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + V\psi \iff E = \frac{p^2}{2m} + V$$

Dirac equation (relativistic)

 $\gamma^{\mu} \left( i\hbar\partial_{\mu} + qA_{\mu} \right) \Psi = mc\Psi \rightsquigarrow E = V \pm \sqrt{c^2 p^2 + m^2 c^4}$ 

Positive and negative energy levels  $\rightarrow$  Dirac sea  $\rightarrow$  holes = positrons



Electric field: tilt  $V(x) = q \mathfrak{E} x$  $\rightarrow$  tunneling from Dirac sea



# Matter from Light

C.Kohlfürst, N.Ahmadiniaz, J.Oertel, R.S., Phys. Rev. Lett. 129, 241801 (2022).

Sauter-Schwinger (non-perturbative)

Breit-Wheeler (perturbative)



Colliding laser pulses (Maxwell equations  $\checkmark$  transversal fields  $\checkmark$ )



# **Quantum Simulators**

N. Szpak, R. S., Phys. Rev. A 84 (R), 050101 (2011); New J. Phys. 14, 035001 (2012). Fermions in bi-chromatic 1D-lattice (e.g., optical) Continuum limit  $\rightarrow$  Dirac equation with  $m_{\text{eff}}(t)$  !!!

 $\gamma^{\mu}\left(i\hbar\partial_{\mu}+qA^{\mathrm{eff}}_{\mu}
ight)\Psi=m_{\mathrm{eff}}c_{\mathrm{eff}}\Psi$ 

"The same equations have the same solutions." Lower band filled  $\rightarrow$  Dirac sea Lattice deformation  $\rightarrow \mathfrak{E}_{eff}(t)$ Lattice gap  $\rightarrow 2m_{eff}c_{eff}^2 \ll 2m_ec^2$ Hopping rate  $\hbar J\ell_{lattice} \rightarrow c_{eff} \ll c$ 



Cf. M.F.Linder, A.Lorke, R.S., Phys. Rev. B 97, 035203 (2018).













4 🗆 🕨

### **Summary and Outlook**

### Dynamically assisted tunneling

C. Kohlfürst, F. Queisser and R.S., Phys. Rev. Research **3**, 033153 (2021); D. Ryndyk, C. Kohlfürst, F. Queisser, R.S., Phys. Rev. Research **6**, 023056 (2024).



Dynamically assisted nuclear fusion F. Queisser and R.S., Phys. Rev. C 100, 041601(R) (2019).



Dynamically assisted Sauter-Schwinger effect  $\rightarrow$  quantum simulators C.Kohlfürst, N.Ahmadiniaz, J.Oertel, R.S., Phys. Rev. Lett. **129**, 241801 (2022).

