Can guantum computers enhance machine learning?
If yes, then how?
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Quantum machine learning

Uses quantum computers for any part
of the machine learning algorithm

Goal

Perform computations that cannot be
done with classical computers alone



Supervised machine learning: input — output pairs are used to make
predictions at unseen parts of input space

L

Inputs: variables collected into multi-dimensional vectors
(e.g. parameters of experiment)

Outputs: quantity to predict (e.g. observable)



Supervised machine learning: input — output pairs are used to make
predictions at unseen parts of input space

Classification (outputs: +/-)
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Regression (continuous outputs)



Does quantum machine learning have the quantum advantage?

In principle, Yes! < | Computational
complexity theory
N

Universal expressiveness of variational quantum classifiers and quantum kernels for
support vector machines

J Jager, RV Krems
Nature Communications 14 (1), 576 (2023)




P = solvable in polynomial time on a
deterministic Turing machine

NP = solvable in polynomial time on a
non-deterministic Turing machine

BQP = decision problems solvable
in polynomial time by a quantum
computer with probability > 2/3

PromiseBQP-
complete

*

PromiseBQP




k-Forrelation problem
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PromiseBQP-

- _ complete
Generalization of the Forrelation problem: *
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PromiseBQP

Two Boolean functions fand g

Are f and g forrelated or not?

Forrelation = correlation between
f and the Fourier transform of g

Aaronson, S. & Ambainis, A. Forrelation: A problem that optimally separates quantum from
classical computing. SIAM Journal on Computing 47, 982—-1038 (2018)



Universal expressiveness of variational quantum classifiers and quantum kernels for

support vector machines
J Jager, RV Krems
Nature Communications 14 (1), 576

Reformulated the k-Forrelation promise
problem as a ML classification problem

k-Forrelation promise
problem | >

Separating boundary can be constructed
efficiently using quantum circuits

Does quantum machine learning have a quantum
advantage? ... Yes!




Does quantum machine learning have the quantum advantage?

In principle, Yes! ... Why “in pricniple”?

k-Forrelation quantum circuits solve the classification problem exactly...
What if the accuracy requirement is relaxed?

Is there an efficient classical algorithm
that gives an approximate solution for
the separating boundary?




Does quantum machine learning have the quantum advantage?

In principle, Yes! ... Why “in pricniple”?

We know how to bias the quantum models for the k-Forrelation data set...

However, we don’t necessarily know how to do this for arbitrary problems

How to build guantum machine learning models that
outperform classical machine learning for practical applications?
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Small Big
Data Data

Build models that Build models that
infer more from less scale well
Q Relevant when data are expensive



Question:
Can one build physical ML models based on small data?

What is physical’?

Physical parameters

Physical parameters



Goal:

Build models that infer more (physics) from less (data)
How?

Kernel models: mathematically grounded

Bayesian models: a way to select best kernels for limited data
Can quantum computing help?

Can quantum kernels offer better inference than classical kernels?



Summary of key points so far:
Quantum machine learning has a quantum advantage!

We know this because a QML algorithm can be designed to solve
a PromiseBQP-complete problem.

We don’t know: how to take advantage of the quantum advantage!

Let’s aim to address this questions by constructing quantum ML
models that “infer more from less” for low-dimensional problems.



How does (kernel) machine learning work?
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How does (kernel) machine learning work?




The reality is (most often)
non-linear S

... but 1t can be made linear ...



The change x — ®(z) with ®(x) = z sin(x), transforms
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Performing regression

If only we knew ®(x) for every problem ...



Inner product in a high-dimensional Hilbert space



Hilbert showed that the integrals over two real-valued, square-integrable
functions

b
inner product — (f,q) = / f(x)g(x)dx
a

have the same properties as a scalar product of two vectors in a Eu-
clidean space.

For orthogonal functions, this means:

(fi9) =0



Consider an integral transform:

b
f(z) = / K (2, 4)f )y

with the kernel K (x,y) that is symmetric in x and y.

Hilbert’s discovery implies that the kernel can be written as

K(z,y) = Z A®n () Pn(y)
n=1

where ¢y, (x) are orthogonal functions.

If ¢p(x) are ortho-normal, A\, = 1.
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K(z,y) = Z dn(T)dn(y)  is a special function
n=1
Let’s index it by  and view it as a function of y:

Kx(fg) — Z a:p,nﬁbn(y)

n
We can then write:

b
fa) = [ Ky = (Ko
a
Thus, any function can be written as

f(l’) — <f7 K$>



Now, consider an arbitrary, positive-definite function K (x,y) with the
eigenvalue equation:

)
/ Bl )l = bl Ay 20

Can we still write:  f(x) = (f, Kz) 7

The answer 1s Yes! — and this leads to the notion

of RKHS = Reproducing Kernel Hilbert Space



The answer is yes, if we redefine the inner product of the Hilbert space
as

_ ; <f> ¢n)>\iga ¢n>

In this case,

=

n

What if some of the eigenvalues Ay, are zero (or small)?

b
/ K (2.9)bn()dy = Anon(z)  with A > 0



The choice of the kernel function determines the learning

Bad kernel Good kernel

b
/ K (2. 9)bn(y)dy = Adn(x)  with Ay > 0



The choice of the kernel function determines the learning

Bad kernel Good kernel




Given two kernels, how to tell which is better?

7 . . ~ P(Data|M;)P(M;)

The Bayes’ theorem:  P(M;|Data) = P(Data)
P(M,|Data)  PM)
P(Mjy|Data) P(My)

Assuming the same priors: P(My) = P(Mbs)

P Dat
The ratio of the posteriors: (M, |Data) — —

P(Ms|Data)




Given two kernels, how to tell which is better?

We approximate marginal likelihood by

Bayesian Information Criterion

P(M;i|Data) P(Data|M;)

The ratio of the posteriors: =

P(Mjs|Data)  P(Data|My)



Start with several basic kernels, such as these ones:

kLN (X4, %) = X, X

1
kRBF(Xian) — €Xp (—§T2(Xz‘,xj)>

5

knmat (Xi,X;) = <1+\F7~ (xi, %) + 37“2(XZ-,X]-)>

X exp (—\/5r2(xi, Xj))




Combine them to increase complexity:

No kernel

RQ + RBF
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RQ + MAT

RQ x LIN x RBF .-~ |RQ x LIN + RBF| --- RQ x LIN + MAT

Bayesian Information Criterion: Balances
maximum likelihood and model complexity

D. K. Duvenaud et al, Structure discovery in nonparametric regression through
compositional kernel search, Proceedings of the 30th International Conference on

Machine Learning Research 28, 1166 (2013).




This yields ML models that extrapolate!

Physical parameters

Physical parameters



Heisenberg spin model

XXX XK Ky

X X X X XXXxx
X X X X XXX
x X X X XXXX0O00000u4e!
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Rodrigo Vargas, John Sous, Mona Berciu and R. V. Krems, Phys. Rev. Lett. 121, 255702 (2018)
Jun Dai and R. V. Krems, J. Chem. Theory Comp. 16, 1386 (2020)



Generalized polaron model

H = Z Ekc/tck + Z wqbgbq + Ve—ph
k q

Ve—ph = all] + G Ho

. sin(k + q) — sin(k)] C;LJrqck (bT_q - bq)

\/_ (q )cJ]Lquck (bT_q e bq)

Felipe Herrera, Kirk Madison, RK, Mona Berciu, Phys. Rev. Lett. 110, 223002 (2013)



Generalized polaron model

Felipe Herrera, Kirk Madison, RK, Mona Berciu, Phys. Rev. Lett. 110, 223002 (2013)



Extrapolation from a smaller Hilbert space to a bigger
Hilbert space:

saseyd ssouoy
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From high phonon frequencies to low phonon frequencies

Pranav Kairon, J. Sous, M. Berciu and RK, Phys Rev B (2024)



Summary of key points so far:
ML predictions can be improved
either by increasing the amount of training data
or by aligning RKHS kernels with fixed, limited data

The Bayesian approach can improve kernels for machines to learn
“more from less”

We will now use the same approach to build qguantum kernels that
outperform classical kernels



Kernel methods of machine learning

/_’ RKHS kernel \

Inputs
Model

Model Output J




Quantum machine learning

/—} Quantum Circuit
Encoding Data

Quantum
Measurement

Classical Inputs

/

Output
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Quantum Kernel

Quantum Circuit
Encoding Data

Quantum
Measurement

Model Output Model

L B B R T T



Consider a quantum computer with n qubits, initially in state |0)®".

Introduce a sequence of gates that produces a quantum state I/ (z)|0)©"

and another state U(z’)|0)®"




Consider a quantum computer with n qubits, initially in state |0)®".

Introduce a sequence of gates that produces a quantum state I (z)|0)®"

and another state U(z')|0)®"

The measurable square of the inner product:

0| UT (2 U ()|0) "

has all the properties of a kernel of an RKHS



Thus, projecting
UT (" U(x)0)®" onto  |0)®"

can be another way of building kernels for kernel ML:

K(z,z') = [(0/°"U" (') U(x)|0) " |

What is the best way to put the gates together to produce the most
optimal kernel?




Compositional optimization of quantum circuits for quantum kernels of support vector
machines

E Torabian, RV Krems

Physical Review Research 5 (1), 013211

No kernel

RQ + MAT RQ + RBF

= A

RQ x LIN x RBF .-+ |RQ x LIN + RBF| --- RQ x LIN + MAT




Compositional optimization of quantum circuits for quantum kernels of support vector

machines
E Torabian, RV Krems
Physical Review Research 5 (1), 013211

Classification problem:

are perovskites A,BBXs metals — Yes/No?

Qubits encode the size of the ions in a

Quantum kernels

given perovskite

*
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Quantum kernels can be constructed to offer powerful inference

However... This algorithm is difficult to scale

Is there a another (better) way to build quantum circuits?

Quantum kernels

4 6 8
Number of Layers




A radical idea:

Quantum circuits are isomorphic to polyatomic molecules!




A radical idea:

Quantum circuits are isomorphic to polyatomic molecules!

Description of quantum circuits by molecular fingerprints!
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Principle components of molecular fingerprints from cheminformatics



Why to simulate quantum circuits by molecules?

We know a lot about how to handle molecular compound spaces

Chemical subspace for drugs: 1023 to 10%° molecules



Interpolation of entropy in the space of 133,000 molecules
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Dawn Mao and RK, Efficient interpolation of molecular properties across

chemical compound space with low-dimensional descriptors, MLST (2024)




Molecules are physical objects

One can design effective physical descriptors of molecules

« Good QC design
« Bad QC design
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Compositional optimization of quantum circuits for quantum kernels of support vector

machines
E Torabian, RV Krems
Physical Review Research 5 (1), 013211

Efficient interpolation of molecular properties across chemical compound space with low-

dimensional descriptors

YW Mao, RV Krems
Machine Learning: Science and Technology 5 (1), 015059

Extrapolating quantum observables with machine learning: Inferring multiple phase
transitions from properties of a single phase

RA Vargas-Hernandez, J Sous, M Berciu, RV Krems
Physical review letters 121 (25), 255702

Extrapolation of polaron properties to low phonon frequencies by Bayesian machine

learning
P Kairon, J Sous, M Berciu, RV Krems
Physical Review B 109 (14), 144523

Universal expressiveness of variational quantum classifiers and quantum kernels for

support vector machines
J Jager, RV Krems
Nature Communications 14 (1), 576




