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Can quantum computers enhance machine learning?
If yes, then how?



Quantum machine learning            

Uses quantum computers for any part 
of the machine learning algorithm

Goal
Perform computations that cannot be 
done with classical computers alone
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Inputs: variables collected into multi-dimensional vectors 
      (e.g. parameters of experiment) 

Supervised machine learning: input – output pairs are used to make
         predictions at unseen parts of input space

Outputs: quantity to predict (e.g. observable) 

x Model f(x)

Data Prediction
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Classification (outputs: +/-)

Regression (continuous outputs)

Supervised machine learning: input – output pairs are used to make
         predictions at unseen parts of input space



Does quantum machine learning have the quantum advantage?
           

In principle, Yes! Computational 
complexity theory

(2023)



P

BQP

NPNP-hard

PromiseBQP

PromiseBQP-
complete

PromiseBQP-hard

NP = solvable in polynomial time on a
       non-deterministic Turing machine

P = solvable in polynomial time on a
       deterministic Turing machine

BQP = decision problems solvable 
in polynomial time by a quantum 
computer with probability > 2/3



k-Forrelation problem

Generalization of the Forrelation problem:

Two Boolean functions f and g

Are f and g forrelated or not?

Forrelation = correlation between 
f and the Fourier transform of g P

BQP

PromiseBQP

PromiseBQP-
complete

PromiseBQP-hard

Aaronson, S. & Ambainis, A. Forrelation: A problem that optimally separates quantum from 
classical computing. SIAM Journal on Computing 47, 982–1038 (2018)



Does quantum machine learning have a quantum 
advantage? … Yes!

Reformulated the k-Forrelation promise 
problem as a ML classification problem

k-Forrelation promise 
problem

Separating boundary can be constructed 
efficiently using quantum circuits



Does quantum machine learning have the quantum advantage?
           

In principle, Yes!       …     Why “in pricniple”?

k-Forrelation quantum circuits solve the classification problem exactly… 
What if the accuracy requirement is relaxed? 

Is there an efficient classical algorithm 
that gives an approximate solution for 
the separating boundary?



Does quantum machine learning have the quantum advantage?
           

In principle, Yes!       …     Why “in pricniple”?

We know how to bias the quantum models for the k-Forrelation data set… 

However, we don’t necessarily know how to do this for arbitrary problems

How to build quantum machine learning models that 
outperform classical machine learning for practical applications?



x Model f(x)

PredictionData

Small 
Data

Big 
Data

Build models that 
scale well

Build models that 
infer more from less

Relevant when data are expensive



Question: 

 Can one build physical ML models based on small data?

 What is `physical’?

Physical parameters
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Goal: 

 Build models that infer more (physics) from less (data)

How?

 Kernel models: mathematically grounded
 
 Bayesian models: a way to select best kernels for limited data

Can quantum computing help? 

 Can quantum kernels offer better inference than classical kernels?



Summary of key points so far: 

 Quantum machine learning has a quantum advantage!
 
 We know this because a QML algorithm can be designed to solve 
 a PromiseBQP-complete problem.

 We don’t know: how to take advantage of the quantum advantage! 

 Let’s aim to address this questions by constructing quantum ML 
 models that “infer more from less” for low-dimensional problems.



How does (kernel) machine learning work?
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The reality is (most often)
non-linear

... but it can be made linear ...



The change x ! �(x) with �(x) = x sin(x), transforms

into



Performing regression

and transforming back, yields:

If only we knew �(x) for every problem ...
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nX

i

(yi � f (xi))
2 + �hf, fiH

Inner product in a high-dimensional Hilbert space



Hilbert showed that the integrals over two real-valued, square-integrable

functions

inner product ! hf, gi =

Z b

a
f (x)g(x)dx

have the same properties as a scalar product of two vectors in a Eu-

clidean space.

For orthogonal functions, this means:

hf, gi = 0



Consider an integral transform:

f (x) =

Z b

a
K(x, y)f (y)dy

with the kernel K(x, y) that is symmetric in x and y.

Hilbert’s discovery implies that the kernel can be written as

K(x, y) =
1X

n=1

�n�n(x)�n(y)

where �n(x) are orthogonal functions.

If �n(x) are ortho-normal, �n = 1.



K(x, y) =
1X

n=1

�n(x)�n(y) is a special function

Let’s index it by x and view it as a function of y:

Kx(y) =
X

n

ax,n�n(y)

We can then write:

f (x) =

Z b

a
K(x, y)f (y)dy = hf,Kxi

Thus, any function can be written as

f (x) = hf,Kxi



Now, consider an arbitrary, positive-definite functionK(x, y) with the
eigenvalue equation:

Z b

a
K(x, y)�n(y)dy = �n�n(x) with �n � 0

Can we still write: f (x) = hf,Kxi ?

The answer is Yes! – and this leads to the notion 
of RKHS = Reproducing Kernel Hilbert Space



The answer is yes, if we redefine the inner product of the Hilbert space

as

hf, giH =

1X

n=1

hf,�nihg,�ni

�n

In this case,

hf,KxiH =

1X

n=1

hf,�nihKx,�ni

�n
=

X

n

hf,�ni�n(x) = f (x)

What if some of the eigenvalues �n are zero (or small)?



RKHS

RKHS

Bad kernel Good kernel

The choice of the kernel function determines the learning



RKHS

RKHS

Bad kernel Good kernel

The choice of the kernel function determines the learning

How to find the right kernel?



Say we have two kernels: M1 and M2

The Bayes’ theorem: P (Mi|Data) =
P (Data|Mi)P (Mi)

P (Data)

P (M1|Data)
P (M2|Data)

=
P (Data|M1)

P (Data|M2)
⇥ P (M1)

P (M2)

Assuming the same priors: P (M1) = P (M2)

The ratio of the posteriors:
P (M1|Data)
P (M2|Data)

=
P (Data|M1)

P (Data|M2)

Given two kernels, how to tell which is better?
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Say we have two kernels: M1 and M2

The Bayes’ theorem: P (Mi|Data) =
P (Data|Mi)P (Mi)

P (Data)

P (M1|Data)
P (M2|Data)

=
P (Data|M1)

P (Data|M2)
⇥ P (M1)

P (M2)

Assuming the same priors: P (M1) = P (M2)

The ratio of the posteriors:
P (M1|Data)
P (M2|Data)

=
P (Data|M1)

P (Data|M2)

Given two kernels, how to tell which is better?

We approximate marginal likelihood by 
Bayesian Information Criterion
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2

tron and phonon dispersions, and Ve�ph is the electron-
phonon coupling. We choose Ve�ph to be a combination
of two qualitatively di↵erent terms Ve�ph = ↵H1 + �H2,
where

H1 =
X

k,q

2i
p
N

[sin(k + q)� sin(k)] c†
k+q

ck

⇣
b
†
�q

+ bq

⌘
(3)

describes the Su-Schrie↵er-Heeger (SSH) [35] electron-
phonon coupling, and

H2 =
X

k,q

2i
p
N

sin(q)c†
k+q

ck

⇣
b
†
�q

+ bq

⌘
(4)

is the breathing-mode model [36]. The ground state band
of the model (2) represents polarons known to exhibit
two sharp transitions as the ratio ↵/� increases from
zero to large values [37]. At ↵ = 0, the model (2) de-
scribes breathing-mode polarons, which have no sharp
transitions [38]. At � = 0, the model (2) describes
SSH polarons, which exhibit one sharp transition in the
polaron phase diagram [35]. At these transitions, the
ground state momentum of the polaron changes abruptly,
as shown in Figure 2 (left). Our goal is to develop a ML
method that, using properties from one of the phases,
can predict the existence or absence of other phases.

Method. We use Gaussian Process (GP) regression as
the prediction method [41], described in detail in the Sup-
plemental Material [42]. The goal of the prediction is to
infer an unknown function f(·) given some inputs xi and
outputs yi. The assumption is that yi = f(xi). The func-
tion f is generally multidimensional so xi is a vector.

GPs do not infer a single function f(·), but rather a
distribution over functions, p(f |X,y), where X is a vec-
tor of all known xi and y is a vector of the corresponding
values yi. This distribution is assumed to be normal. The
joint Gaussian distribution of random variables f(xi) is
characterized by a mean µ(x) and a covariance matrix
K(·, ·). The matrix elements of the covariance Ki,j are
specified by a kernel function k(xi,xj) that quantifies the
similarity relation between the properties of the system
at two points xi and xj in the multi-dimensional space.

Prediction at x⇤ is done by computing the conditional
distribution of f(x⇤) given y and X. The mean of the
conditional distribution is [41]

µ(x⇤) =
X

i

d(x⇤,xi)yi =
X

i

↵ik(x⇤,xi) (5)

where ↵ = K
�1y and d = K(x⇤,X)>K(X,X)�1. The

predicted mean µ(x⇤) can be viewed as a linear combina-
tion of the training data yi or as a linear combination of
the kernels connecting all training points xi and the point
x⇤, where the prediction is made. In order to train a GP
model, one must choose an analytical representation for
the kernel function.

It is – in principle – possible to use Eq. (5) for both in-
terpolation and extrapolation. However, the kernel func-
tion is found by analyzing a given set of data in order

to produce accurate interpolation results. There is no
guarantee that the same kernel function works for ex-
trapolation outside the range of available data.

No kernel

RBF MAT RQ LIN

RQ ⇥ LIN· · ·RQ + MAT · · · RQ + RBF

RQ ⇥ LIN + RBF· · ·RQ ⇥ LIN ⇥ RBF · · · RQ ⇥ LIN + MAT

FIG. 1. Schematic diagram of the kernel construction method
employed to develop a Gaussian Process model with extrap-
olation power. At each iteration, the kernel with the highest
Bayesian information criterion (11) is selected.

This is exemplified by the fact that the choice of
k(x⇤,xi) in Eq. (5) is not unique. For example, k can be
approximated by any of the following functions:

kLIN(xi,xj) = x>
i
xj (6)

kRBF(xi,xj) = exp

✓
�
1

2
r
2(xi,xj)

◆
(7)

kMAT(xi,xj) =

✓
1 +

p

5r2(xi,xj) +
5

3
r
2(xi,xj)

◆

⇥ exp
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kRQ(xi,xj) =
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1 +

|xi � xj |
2

2↵`2

◆�↵

(9)

where r
2(xi,xj) = (xi � xj)> ⇥M ⇥ (xi � xj) and M is

a diagonal matrix with di↵erent length-scales `d for each
dimension of xi. The length-scale parameters `d, ` and
↵ are the free parameters. We describe them collectively
by ✓. A GP is trained by finding the estimate of ✓ (de-
noted by ✓̂) that maximizes the logarithm of the marginal
likelihood function:

log p(y|X, ✓,Mi) = �
1

2
y>

K
�1y �

1

2
log |K|�

n

2
log 2⇡

(10)

For solving an interpolation problem, it is su�cient to
choose any simple kernel (6) - (9). The e�ciency of the
interpolation depends on the kernel, but in the limit of
a large number of training points yi, any simple kernel
function produces accurate results [41]. Eq. (5) shows
that extrapolation is clearly sensitive to the particular
choice of the kernel function. A possible solution to this
problem is to use more complex functions for the kernels.

Start with several basic kernels, such as these ones:



Combine them to increase complexity:

No kernel

RBF MAT RQ LIN

RQ ⇥ LIN· · ·RQ + MAT · · · RQ + RBF

RQ ⇥ LIN + RBF· · ·RQ ⇥ LIN ⇥ RBF · · · RQ ⇥ LIN + MAT

D. K. Duvenaud et al, Structure discovery in nonparametric regression through 
compositional kernel search, Proceedings of the 30th International Conference on 
Machine Learning Research 28, 1166 (2013).

Bayesian Information Criterion: Balances 
maximum likelihood and model complexity



This yields ML models that extrapolate!

Physical parameters
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Rodrigo Vargas, John Sous, Mona Berciu and R. V. Krems, Phys. Rev. Lett. 121, 255702 (2018)
Jun Dai and R. V. Krems, J. Chem. Theory Comp. 16, 1386 (2020)

Heisenberg spin model



Generalized polaron model

Felipe Herrera, Kirk Madison, RK, Mona Berciu, Phys. Rev. Lett. 110, 223002 (2013)
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Generalized polaron model

Felipe Herrera, Kirk Madison, RK, Mona Berciu, Phys. Rev. Lett. 110, 223002 (2013)
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From high phonon frequencies to low phonon frequencies

Across phases 

Pranav Kairon, J. Sous, M. Berciu and RK, Phys Rev B (2024)

Extrapolation from a smaller Hilbert space to a bigger 
Hilbert space:



Summary of key points so far: 

 ML predictions can be improved
   
  either by increasing the amount of training data

  or by aligning RKHS kernels with fixed, limited data 

 The Bayesian approach can improve kernels for machines to learn 
“more from less”

 We will now use the same approach to build quantum kernels that 
outperform classical kernels 



Kernel methods of machine learning

Inputs

RKHS kernel

Model

Model Output



Quantum machine learning            
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Quantum Circuit 
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Classical Data

Quantum Circuit 
Encoding Data

Quantum 
Measurement

Model

Quantum Kernel

Model Output



Consider a quantum computer with n qubits, initially in state |0i⌦n
.

Introduce a sequence of gates that produces a quantum state U(x)|0i⌦n

and another state U(x0
)|0i⌦n

The measurable square of the inner product:

|h0|⌦nU†
(x0

)U(x)|0i⌦n|2

has all the properties of a kernel of an RKHS
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Consider a quantum computer with n qubits, initially in state |0i⌦n
.

Introduce a sequence of gates that produces a quantum state U(x)|0i⌦n

and another state U(x0
)|0i⌦n

The measurable square of the inner product:

|h0|⌦nU†
(x0

)U(x)|0i⌦n|2

has all the properties of a kernel of an RKHS



Thus, projecting

U†(x0)U(x)|0i⌦n onto |0i⌦n

can be another way of building kernels for kernel ML:

K(x,x0) = |h0|⌦nU†(x0)U(x)|0i⌦n|2

What is the best way to put the gates together to produce the most
optimal kernel?
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No kernel

RBF MAT RQ LIN

RQ ⇥ LIN· · ·RQ + MAT · · · RQ + RBF

RQ ⇥ LIN + RBF· · ·RQ ⇥ LIN ⇥ RBF · · · RQ ⇥ LIN + MAT
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Classification problem: 

are perovskites A2BBX6 metals – Yes/No?

Qubits encode the size of the ions in a 
given perovskite 

Quantum kernels



Quantum kernels

Quantum kernels can be constructed to offer powerful inference

However… This algorithm is difficult to scale

Is there a another (better) way to build quantum circuits?



A radical idea:

Quantum circuits are isomorphic to polyatomic molecules!



A radical idea:

Quantum circuits are isomorphic to polyatomic molecules!

Principle components of molecular fingerprints from cheminformatics

Description of quantum circuits by molecular fingerprints!



Why to simulate quantum circuits by molecules? 

We know a lot about how to handle molecular compound spaces

    Chemical subspace for drugs: 1023 to 1060 molecules 

… …



Interpolation of entropy in the space of 133,000 molecules

Dawn Mao and RK, Efficient interpolation of molecular properties across 
chemical compound space with low-dimensional descriptors, MLST (2024)

Chemical accuracy



Molecules are physical objects

One can design effective physical descriptors of molecules




