

Catalytic enhancements in the performance of the microscopic two-stroke engine.

Tanmoy Biswas (Theoretical Division, LANL)

QMCOSMOS Workshop 4th June, 2024

arXiv:2401.15173 , LA-UR 24-20685 (Accepted in Phys. Rev. Lett) arXiv: 2402. 10384 , LA-UR 24-20752 LA-UR-24-25471

Motivation.

1) Understanding thermodynamics at the microscopic regime.

Motivation.

1) Understanding thermodynamics at the microscopic regime.

2) Size vs efficiency trade-off.

Motivation.

1) Understanding thermodynamics at the microscopic regime.

- 2) Size vs efficiency trade-off.
- 3) Quantum computing : Resetting of qubits.

Marcin Łobejko

Paweł Mazurek

Michał Horodecki

International Centre for Theory of Quantum Technologies (ICTQT) University of Gdańsk

Outline of the talk.

- Two-stroke heat engine in the microscopic regime.
 A) Without Catalyst.
 B) With Catalyst.
- 2) Thermodynamic framework.
- 3) Enhancements in the efficiency due to the catalyst.
- 4) Conclusion

Initial state

Without catalyst

 $\tau_h \otimes \tau_c$

$$\tau_{h} = \frac{1}{(1 + e^{-\beta_{h}\omega_{h}})} \begin{pmatrix} 1 & 0 \\ 0 & e^{-\beta_{h}\omega_{h}} \end{pmatrix} ; \quad \tau_{c} = \frac{1}{(1 + e^{-\beta_{c}\omega_{c}})} \begin{pmatrix} 1 & 0 \\ 0 & e^{-\beta_{c}\omega_{c}} \end{pmatrix}.$$

Initial state

Work Stroke

Without catalyst

$$U(\tau_h \otimes \tau_c) U^{\dagger}$$

Work Stroke

Work Stroke

Without catalyst

 $U(\tau_h \otimes \tau_c) U^{\dagger}$

 $W = Tr[(H_h + H_c)(\tau_h \otimes \tau_c - U(\tau_h \otimes \tau_c)U^{\dagger})]$

Work Stroke

Work Stroke

Without catalyst

Final state of hot qubit $Tr_h(U(\tau_h \otimes \tau_c)U^{\dagger}) = \rho_h$ Final state of cold qubit $Tr_c(U(\tau_h \otimes \tau_c)U^{\dagger}) = \rho_c$

Work Stroke

6/4/24

Heat Stroke

Without catalyst

Rethermalization with respective baths

Heat Stroke

Without catalyst

Rethermalization with respective baths

Heat withdrawn from hot bath : $Q_h = Tr[H_h(\tau_h - \rho_h)]$ Heat discharged into cold bath : $Q_c = Tr[H_c(\tau_c - \rho_c)]$

Heat Stroke

Closing the cycle

Thermodynamic framework.

Manifestation of First Law:

 $W = Q_h + Q_c$

Heat with drawn from hot bath $:= Q_h$

Heat discharged into cold bath:= Q_c

Work produced by the engine := W

Thermodynamic framework.

Manifestation of First Law:

 $W = Q_h + Q_c$

Heat with drawn from hot bath $:= Q_h$

Heat discharged into cold bath:= Q_c

Work produced by the engine := W

Manifestation of Second Law:

Efficiency := η

$$\eta \coloneqq \frac{W}{Q_h} = 1 + \frac{Q_c}{Q_h} \le 1 - \frac{\beta_h}{\beta_c} = \eta_{Carnot}$$

$$\omega_h$$
 ω_c τ_c

Optimal Work =
$$\frac{1}{(1+a_h)(1+a_c)}(a_h - a_c)(\omega_h - \omega_c)$$

For a fixed value of ω_h and ω_c

$$\omega_h$$
 ω_c τ_c

Optimal Work =
$$\frac{1}{(1+a_h)(1+a_c)}(a_h - a_c)(\omega_h - \omega_c)$$

$$a_c = e^{-\beta_c \omega_c}$$
$$a_h = e^{-\beta_h \omega_h}$$

Optimal Efficiency = $1 - \frac{\omega_c}{\omega_h}$. (Otto Efficiency)

For a fixed value of ω_h and ω_c

$$\omega_h$$
 ω_c τ_c

Optimal Work =
$$\frac{1}{(1+a_h)(1+a_c)}(a_h - a_c)(\omega_h - \omega_c)$$

$$a_c = e^{-\beta_c \omega_c}$$
$$a_h = e^{-\beta_h \omega_h}$$

0

Optimal Efficiency =
$$1 - \frac{\omega_c}{\omega_h}$$
. (Otto Efficiency)

When
$$\frac{\omega_c}{\omega_h} = \frac{\beta_h}{\beta_c}$$
 then $a_h = a_c$. This implies optimal work is

 ω_h

 ω_c

 $\tau_h \otimes \tau_c$

Efficiency:
$$\eta_2 = 1 - \frac{\omega_c}{2\omega_h} > 1 - \frac{\omega_c}{\omega_h}$$

= Optimal efficiency without catalyst
 $|011\rangle_{s,h,c}$
 $|010\rangle_{s,h,c}$
 $|010\rangle_{s,h,c}$
 $|010\rangle_{s,h,c}$
 $|001\rangle_{s,h,c}$
 $|000\rangle_{s,h,c}$
 $|000\rangle_{s,h,c}$

For a fixed value of ω_h and ω_c

Efficiency:
$$\eta_2 = 1 - \frac{\omega_c}{2\omega_h} > 1 - \frac{\omega_c}{\omega_h}$$

= Optimal efficiency without catalyst

 $\rho_s \otimes \tau_h \otimes \tau_c$

Catalysis condition: $Tr_{h,c}U(\rho_s \otimes \tau_h \otimes \tau_c)U^{\dagger} = \rho_s$

For a fixed value of ω_h and ω_c

= Optimal efficiency without catalyst

 $\rho_s \otimes \tau_h \otimes \tau_c$

Catalysis condition: $Tr_{h,c}U(\rho_s \otimes \tau_h \otimes \tau_c)U^{\dagger} = \rho_s$

For a fixed value of ω_h and ω_c

Efficiency:
$$\eta_2 = 1 - \frac{\omega_c}{2\omega_h} > 1 - \frac{\omega_c}{\omega_h}$$

= Optimal efficiency without catalyst

$$Q_h = Tr[H_h(\tau_h - \rho_h)] = \Delta P \omega_h$$

 $\rho_s \otimes \tau_h \otimes \tau_c$

 $\rho_s \otimes \tau_h \otimes \tau_c$

For a fixed value of ω_h and ω_c

Efficiency:
$$\eta_2 = 1 - \frac{\omega_c}{2\omega_h} > 1 - \frac{\omega_c}{\omega_h}$$

= Optimal efficiency without catalyst

$$Q_h = Tr[H_h(\tau_h - \rho_h)] = \Delta P \omega_h$$

 $\rho_s \otimes \tau_h \otimes \tau_c$

 $\rho_s \otimes \tau_h \otimes \tau_c$

 $\rho_s \otimes \tau_h \otimes \tau_c$

For a fixed value of ω_h and ω_c

Efficiency:
$$\eta_2 = 1 - \frac{\omega_c}{2\omega_h} > 1 - \frac{\omega_c}{\omega_h}$$

= Optimal efficiency without catalyst
For a *d*-dimensional catalyst : $\eta_d = 1 - \frac{n\omega_c}{d\omega_h}$ $n \in \{1, ..., d\}$

 $\rho_s \otimes \tau_h \otimes \tau_c$

If $\omega_c > \omega_h$, then $1 - \frac{\omega_c}{\omega_h} < 0$;

But efficiency in catalytic scenario can still be positive depending on *n* and $d: \eta = 1 - \frac{n\omega_c}{d\omega_h} > 0$

If
$$\omega_c > \omega_h$$
, then $1 - \frac{\omega_c}{\omega_h} < 0$;

But efficiency in catalytic scenario can still be positive depending on *n* and $d: \eta = 1 - \frac{n\omega_c}{d\omega_h} > 0$ ິສ∣ ສ້ 2 $rac{eta_c}{eta_h}$

For a fixed value of ω_h and ω_c

$$W \propto \left(e^{-\beta_h \omega_h (m+n)} - e^{-n\beta_c \omega_c} \right) = \left(e^{-\beta_h \omega_h d} - e^{-n\beta_c \omega_c} \right)$$

n

Work extraction ($\frac{W}{\omega_h}$)

Conclusion and Outlooks.

- 1) Describing the catalyst assisted two-stroke engine.
- 2) We have shown the efficiency and work per cycle can be enhanced by incorporating a catalyst.
- 3) Exploring the roles of catalysis in cooling of qubits.
- 4) Bridging the gap between the catalyst assisted stroke-based and continuous thermal machines.

